Inteligencia artificial en la evaluación y manejo de pacientes con epilepsia.
Resumen
La epilepsia es una enfermedad que frecuentemente conlleva significativos niveles de morbi-mortalidad, afecta seriamente la calidad de vida y, en cerca de un tercio de los pacientes, es refractaria a diversos tratamientos. La inteligencia artificial (IA) ha beneficiado el estudio, tratamiento y pronóstico de los pacientes con epilepsia a través de los años. Estos logros abarcan diagnóstico, predicción de crisis automatizada, monitoreo avanzado de crisis epilépticas y electroencefalograma, uso de recursos genéticos en manejo y diagnóstico, algoritmos en imagen y tratamiento, neuromodulación y cirugía robótica. La presente revisión explica de forma práctica los avances actuales y futuros de la inteligencia artificial, rama de la ciencia que ha mostrado resultados prometedores en el diagnóstico y tratamiento de pacientes con epilepsia.
Referencias
World Health Organization. Epilepsy: a public health imperative. Ginebra: World Health Organization; 2019. (Citado el 20 de octubre del 2020). Disponible en: https://www.who.int/mental_health/neurology/epilepsy/report_2019/en/
Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51: 1069-1077.
Kwan P, Brodie MJ. Effectiveness of first antiepileptic drug. Epilepsia. 2001;42(10):1255–60.
Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. In: Handbook of Clinical Neurology. 2019; 1: 45–71. Doi: 10.1016/B978-0-444-64142-7.00040-0
Boling W, Aghakhani Y, Andermann F, Sziklas V, Olivier A. Surgical treatment of independent bitemporal lobe epilepsy defined by invasive recordings. J Neurol Neurosurg Psychiatry. 2009; 80(5): 533–8 . DOI: 10.1136/jnnp.2008.155291
Massot-Tarrús A, Steven DA, McLachlan RS, Mirsattari SM, Diosy D, Parrent AG, et al. Outcome of temporal lobe epilepsy surgery evaluated with bitemporal intracranial electrode recordings. Epilepsy Res. 2016;127:324–330. DOI: 10.1016/j.eplepsyres.2016.08.008
Aghakhani Y, Liu X, Jette N, Wiebe S. Epilepsy surgery in patients with bilateral temporal lobe seizures: A systematic. Epilepsia. 55(12):1892-901. DOI: 10.1111/epi.12856/
Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 200;345(5):311–8. DOI: 10.1056/NEJM200108023450501
Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: A systematic review and meta-analysis. Epilepsy Res. 2010;89(2–3):310–8. DOI: 10.1016/j.eplepsyres.2010.02.007
Tomson T, Walczak T, Sillanpaa M, Sander JWAS. Sudden unexpected death in epilepsy: A review of incidence and risk factors. Epilepsia; 2005; 46: 54–61. DOI: 10.1111/j.1528-1167.2005.00411.x
Vaurio L, Karantzoulis S, Barr WB. The impact of epilepsy on quality of life. En: Chiaravalloti N, Goverover Y, editores. Changes in the Brain. New York: Springer; 2016. p. 167–87. (Citado el 20 de octubre del 2020). Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-98188-8_8
Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav. 2018; 88:251-261. doi: 10.1016/j.yebeh.2018.09.030
Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare [Internet]. Vol. 2, Nature Biomedical Engineering. 2018; 2: 719–31. (Citado el 20 de octubre del 2020). Disponible en: http://www.nature.com/articles/s41551-018-0305-z
Hamet P, Tremblay J. Artificial intelligence in medicine.. 2017;69:S36–40. DOI: 10.1016/j.metabol.2017.01.011
Miller DD, Brown EW. Artificial Intelligence in Medical Practice: The Question to the Answer?. Am J Med. 2018;131(2):129-133. doi: 10.1016/j.amjmed.2017.10.03
Moreno-Díaz R, Moreno-Díaz A. On the legacy of W.S. McCulloch. Biosystems. 2007;88(3):185-90. doi: 10.1016/j.biosystems.2006.08.010
Abraham TH. (Physio)logical circuits: The intellectual origins of the Mcculloch-Pitts neural networks. J Hist Behav Sci. Winter 2002;38(1):3-25. doi: 10.1002/jhbs.1094
Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920-30. doi: 10.1161/CIRCULATIONAHA.115.001593
El-Hassoun O, Maruscakova L, Valaskova Z, Bucova M, Polak S, Hulin I. Artificial intelligence in service of medicine. Bratisl Lek Listy. 2019;120(3):218-222. doi: 10.4149/BLL_2019_028
Abbasi B, Goldenholz DM. Machine learning applications in epilepsy. Epilepsia. 2019;60(10):2037-2047. doi: 10.1111/epi.16333
Ahmedt-Aristizabal D, Fookes C, Dionisio S, Nguyen K, Cunha JPS, Sridharan S. Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey. Epilepsia. 2017;58(11):1817-1831. doi: 10.1111/epi.13907
Caudle K, Klein T, Hoffman J, Muller D, Whirl-Carrillo M, Gong L, et al. Incorporation of Pharmacogenomics into Routine Clinical Practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Development Process. Curr Drug Metab. 2014;15(2):209-17. doi: 10.2174/1389200215666140130124910
Abul-Husn NS, Kenny EE. Leading Edge Perspective Personalized Medicine and the Power of Electronic Health Records. Cell. 2019;177:58–69. DOI:10.1016/j.cell.2019.02.039
Josephson CB, Wiebe S. Precision Medicine: Academic dreaming or clinical reality? Epilepsia. 2021;62 Suppl 2:S78-S89. doi: 10.1111/epi.16739
Weisdorf S, Zibrandtsen IC, Kjaer TW. Subcutaneous EEG Monitoring Reveals AED Response and Breakthrough Seizures. Case Rep Neurol Med. 2020; 2020: 8756917. doi: 10.1155/2020/8756917.
Byteflies. We enable wearable health. Byteflies; 2019 . (Citado el 24 de enero del 2021). Disponible en: https://na.eventscloud.com/file_uploads/403e877cecc7b00791b8f387f15f49e0_Danneels_Byteflies-eHealth.pdf
Nasseri M, Nurse E, Glasstetter M, Böttcher S, Gregg NM, Laks Nandakumar A, et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia. 2020;61 Suppl 1:S25-S35. doi: 10.1111/epi.16527
Duun‐Henriksen J, Baud M, Richardson MP, Cook M, Kouvas G, Heasman JM, et al. A new era in electroencephalographic monitoring? Subscalp devices for ultra–long‐term recordings. Epilepsia. 2020;61(9):1805-1817. doi: 10.1111/epi.16630
Tanner AEJ, Särkelä MOK, Virtanen J, Viertiö-Oja HE, Sharpe MD, Norton L, et al. Application of subhairline EEG montage in intensive care unit: Comparison with full montage. J Clin Neurophysiol. 2014;31(3):181-6. doi: 10.1097/WNP.0000000000000049
Ferrari LM, Ismailov U, Badier JM, Greco F, Ismailova E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flex Electron. 2020 ;4(1). (Citado el 22 de diciembre del 2020) Disponible en: https://www.nature.com/articles/s41528-020-0067-z
Lockman J, Fisher RS, Olson DM. Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 2011;20(4):638-41. doi: 10.1016/j.yebeh.2011.01.019
Villar JR, Menéndez M, Sedano J, de la Cal E, González VM. Analyzing accelerometer data for epilepsy episode recognition. In: Advances in Intelligent Systems and Computing. Springer Verlag; 2015. p. 39–48.
Beniczky S, Polster T, Kjaer TW, Hjalgrim H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study. Epilepsia. 2013;54(4):e58-61. doi: 10.1111/epi.12120
Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279-288. doi: 10.1016/S1474-4422(18)30038-3
Vieluf S, Reinsberger C, Atrache R El, Jackson M, Schubach S, Ufongene C, et al. Autonomic nervous system changes detected with peripheral sensors in the setting of epileptic seizures. Sci Rep. 2020;10(1):11560. doi: 10.1038/s41598-020-68434-z
Goldenholz DM, Goldenholz SR, Romero J, Moss R, Sun H, Westover B. Development and Validation of Forecasting Next Reported Seizure Using e-Diaries. Ann Neurol. 2020;88(3):588-595. doi: 10.1002/ana.25812
Striano P, Minassian BA. From Genetic Testing to Precision Medicine in Epilepsy. Neurotherapeutics. 2020;17(2):609-615. doi: 10.1007/s13311-020-00835-4
Franco V, Perucca E. The pharmacogenomics of epilepsy. Expert Rev Neurother. 2015; 15(10):1161-70. doi: 10.1586/14737175.2015.1083424
Beniczky S, Rampp S, Asadi‐Pooya AA, Rubboli G, Perucca E, Sperling MR. Optimal choice of antiseizure medication: Agreement among experts and validation of a web‐based decision support application. Epilepsia. 2021;62(1):220-227. doi: 10.1111/epi.16763
Asadi‐Pooya AA, Beniczky S, Rubboli G, Sperling MR, Rampp S, Perucca E. A pragmatic algorithm to select appropriate antiseizure medications in patients with epilepsy. Epilepsia. 2020;61(8):1668–77. DOI: 10.1111/epi.16610
Velis D, Plouin P, Gotman J, Da Silva FL. Recommendations regarding the requirements and applications for long-term recordings in epilepsy. Epilepsia. 2007;48(2):379-84. doi: 10.1111/j.1528-1167.2007.00920.x
Emami A, Kunii N, Matsuo T, Shinozaki T, Kawai K, Takahashi H. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. Neuroimage Clin. 2019;22:101684. doi: 10.1016/j.nicl.2019.101684
Varsavsky A, Mareels I, Cook M. Epileptic Seizures and the EEG . Boca Ratón: CRC Press; 2016. (Citado el 20 de octubre del 2020). Disponible en: https://www.taylorfrancis.com/books/epileptic-seizures-eeg-andrea-varsavsky-iven-mareels-mark-cook/10.1201/b10459
González Otárula KA, Mikhaeil-Demo Y, Bachman EM, Balaguera P, Schuele S. Automated seizure detection accuracy for ambulatory EEG recordings. Neurology. 2019; 92(14):e1540-e1546. doi: 10.1212/WNL.0000000000007237
Sierra-Marcos A, Scheuer ML, Rossetti AO. Seizure detection with automated EEG analysis: a validation study focusing on periodic patterns. Clin Neurophysiol. 2015; 126(3): 456-62. doi: 10.1016/j.clinph.2014.06.025
Gotman J. Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol. 1990; 76(4):317-24. doi: 10.1016/0013-4694(90)90032-f.
Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol. 1976;41(5):513-29. doi: 10.1016/0013-4694(76)90063-8
Scheuer ML, Wilson SB, Antony A, Ghearing G, Urban A, Bagić AI. Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset. J Clin Neurophysiol. 2021;38(5):439-447. doi: 10.1097/WNP.0000000000000709
Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav. 2018;88:251-261. doi: 10.1016/j.yebeh.2018.09.030
Del Gaizo J, Mofrad N, Jensen JH, Clark D, Glenn R, Helpern J, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain Behav. 2017;7(10):e00801. doi: 10.1002/brb3.801
Bennett OF, Kanber B, Hoskote C, Cardoso MJ, Ourselin S, Duncan JS, et al. Learning to see the invisible: A data‐driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy. Epilepsia. 2019;60(12):2499-2507. doi: 10.1111/epi.16380
Kamiya K, Amemiya S, Suzuki Y, Kunii N, Kawai K, Mori H, et al. Machine Learning of DTI Structural Brain Connectomes for Lateralization of Temporal Lobe Epilepsy. Magn Reson Med Sci. 2016;15(1):121-9. doi: 10.2463/mrms.2015-0027
Gill RS, Hong SJ, Fadaie F, Caldairou B, Bernhardt BC, Barba C, et al. Deep convolutional networks for automated detection of epileptogenic brain malformations. In: Lecture Notes in Computer Science. Nerw York: Springer Verlag; 2018. p. 490–7.
Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83(1):48-55. doi: 10.1212/WNL.0000000000000543
Ahmed B, Brodley CE, Blackmon KE, Kuzniecky R, Barash G, Carlson C, et al. Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav. 2015;48:21-8. doi: 10.1016/j.yebeh.2015.04.055
Coelho VCM, Morita ME, Amorim BJ, Ramos CD, Yasuda CL, Tedeschi H, et al. Automated online quantification method for 18F-FDG positron emission tomography/CT improves detection of the epileptogenic zone in patients with pharmacoresistant epilepsy. Front Neurol. 2017;8:453. doi: 10.3389/fneur.2017.00453
Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery Nat Rev Neurol. 2019;15(10):594-606. doi: 10.1038/s41582-019-0224-y
Kini LG, Bernabei JM, Mikhail F, Hadar P, Shah P, Khambhati AN, et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain. 2019;142(12):3892-3905. doi: 10.1093/brain/awz303
Ho AL, Muftuoglu Y, Pendharkar A V., Sussman ES, Porter BE, Halpern CH, et al. Robot-guided pediatric stereoelectroencephalography: Single-institution experience. J Neurosurg Pediatr. 2018;22(5):1-8. doi: 10.3171/2018.5.PEDS17718
De Barros A, Zaldivar-Jolissaint JF, Hoffmann D, Job-Chapron A-S, Minotti L, Kahane P, et al. Indications, Techniques, and Outcomes of Robot-Assisted Insular Stereo-Electro-Encephalography: A Review. Front Neurol. 2020;11:1033. doi: 10.3389/fneur.2020.01033
Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010; 51(5): 899-908. doi: 10.1111/j.1528-1167.2010.02536.x
Lim SN, Lee ST, Tsai YT, Chen IA, Tu PH, Chen JL, et al. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: A long-term follow-up study. Epilepsia. 2007;48(2):342–7.
Chang B, Xu J. Deep brain stimulation for refractory temporal lobe epilepsy: a systematic review and meta-analysis with an emphasis on alleviation of seizure frequency outcome. Childs Nerv Syst. 2018;34(2):321-327. doi: 10.1007/s00381-017-3596-6
Kim SH, Lim SC, Kim J, Son BC, Lee KJ, Shon YM. Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: A 11-year, single center experience. Seizure. 2017;52:154-161. doi: 10.1016/j.seizure.2017.10.009
Herrera ML, Suller-Marti A, Parrent A, MacDougall K, Burneo JG. Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy: A Canadian Experience. Can J Neurol Sci. 2021;48(4):469-478. doi: 10.1017/cjn.2020.230
González HFJ, Yengo-Kahn A, Englot DJ. Vagus Nerve Stimulation for the Treatment of Epilepsy. Neurosurg Clin N Am. 2019;30(2):219-230. doi: 10.1016/j.nec.2018.12.005
Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018;88S:2-10. doi: 10.1016/j.yebeh.2018.06.032
Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices. 2018;15(8):527-539. doi: 10.1080/17434440.2018.1507732
Lo WB, Chevill B, Philip S, Agrawal S, Walsh AR. Seizure improvement following vagus nerve stimulator (VNS) battery change with cardiac-based seizure detection automatic stimulation (AutoStim): early experience in a regional paediatric unit. Childs Nerv Syst. 2021;37(4):1237-1241. doi: 10.1007/s00381-020-04962-3
Shenoy C, Alzahrani HA, Upton A, Kamath M V. Electrostimulation for refractory epilepsy: A review. J Long Term Eff Med Implants. 2016;26(3):253-260. doi: 10.1615/JLongTermEffMedImplants.2016017569
Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS ® System). Epilepsy Res. 2019;153:68-70. doi: 10.1016/j.eplepsyres.2019.02.00
Chen H, Dugan P, Chong DJ, Liu A, Doyle W, Friedman D. Application of RNS in refractory epilepsy: Targeting insula. Epilepsia Open. 2017;2(3):345-349. doi: 10.1002/epi4.12061
Geller EB, Skarpaas TL, Gross RE, Goodman RR, Barkley GL, Bazil CW, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58(6):994-1004. doi: 10.1111/epi.13740
Nune G, DeGiorgio C, Heck C. Neuromodulation in the Treatment of Epilepsy Curr Treat Options Neurol. 2015;17(10):375. doi: 10.1007/s11940-015-0375-0
Hrabok M, Engbers JDT, Wiebe S, Sajobi TT, Subota A, Almohawes A, et al. Primary care electronic medical records can be used to predict risk and identify potentially modifiable factors for early and late death in adult onset epilepsy. Epilepsia. 2021;62(1):51-60. doi: 10.1111/epi.16738
Breitling R. What is systems biology? Front Physiol. 2010;1:9. doi: 10.3389/fphys.2010.00009
Mahoney JM, Mills JD, Muhlebner A, Noebels J, Potschka H, Simonato M, et al. WONOEP appraisal: Studying epilepsy as a network disease using systems biology approaches. Epilepsia. 2019;60(6):1045-1053. doi: 10.1111/epi.15216
Wu HC, Dachet F, Ghoddoussi F, Bagla S, Fuerst D, Stanley JA, et al. Altered metabolomic–genomic signature: A potential noninvasive biomarker of epilepsy. Epilepsia. 2017;58(9):1626-1636. doi: 10.1111/epi.13848
Jehi L, Yardi R, Chagin K, Tassi L, Russo G Lo, Worrell G, et al. Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: A retrospective analysis. Lancet Neurol. 2015; 14(3): 283-90. doi: 10.1016/S1474-4422(14)70325-4
Derechos de autor 2022 Elma Paredes-Aragón, Jorge G. Burneo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
La RNP se distribuye bajo una Licencia Creative Commons Atribución 4.0 Internacional.
Los autores ceden sus derechos a la RNP para que esta divulgue el artículo a través de los medios que disponga. La revista proporcionará formatos de declaración jurada de autoría y autorización para la publicación del artículo, los cuales deben ser entregados junto al manuscrito.
Los autores mantienen el derecho a compartir, copiar, distribuir, ejecutar y comunicar públicamente su artículo, o parte de él, mencionando la publicación original en la revista. Los autores pueden archivar en el repositorio de su institución:
- La tesis de grado de la cual derive el artículo publicado.
- La versión pre-print: versión previa a la revisión por pares.
- La versión post-print: versión final posterior a la revisión por pares.
- La versión definitiva o versión final creada por el editor para su publicación.