151
Inteligencia articial en la evaluación y manejo de pacientes con epilepsia.
Rev Neuropsiquiatr. 2022; 85(2): 139-152
seizure prediction. Epilepsy Behav. 2018;88:251-
261. doi: 10.1016/j.yebeh.2018.09.030
50. Del Gaizo J, Mofrad N, Jensen JH, Clark D, Glenn
R, Helpern J, et al. Using machine learning to classify
temporal lobe epilepsy based on diusion MRI. Brain
Behav. 2017;7(10):e00801. doi: 10.1002/brb3.801
51. Bennett OF, Kanber B, Hoskote C, Cardoso MJ,
Ourselin S, Duncan JS, et al. Learning to see the
invisible: A data-driven approach to nding the
underlying patterns of abnormality in visually
normal brain magnetic resonance images in patients
with temporal lobe epilepsy. Epilepsia.
2019;60(12):2499-2507. doi: 10.1111/epi.16380
52. Kamiya K, Amemiya S, Suzuki Y, Kunii N, Kawai
K, Mori H, et al. Machine Learning of DTI Structural
Brain Connectomes for Lateralization of Temporal
Lobe Epilepsy. Magn Reson Med Sci. 2016;15(1):121-
9. doi: 10.2463/mrms.2015-0027
53. Gill RS, Hong SJ, Fadaie F, Caldairou B, Bernhardt
BC, Barba C, et al. Deep convolutional networks
for automated detection of epileptogenic brain
malformations. In: Lecture Notes in Computer
Science. Nerw York: Springer Verlag; 2018. p. 490–7.
54. Hong SJ, Kim H, Schrader D, Bernasconi N,
Bernhardt BC, Bernasconi A. Automated
detection of cortical dysplasia type II in MRI-negative
epilepsy. Neurology. 2014;83(1):48-55. doi: 10.1212/
WNL.0000000000000543
55. Ahmed B, Brodley CE, Blackmon KE, Kuzniecky R,
Barash G, Carlson C, et al. Cortical feature analysis
and machine learning improves detection of “MRI-
negative” focal cortical dysplasia. Epilepsy Behav.
2015;48:21-8. doi: 10.1016/j.yebeh.2015.04.055
56. Coelho VCM, Morita ME, Amorim BJ, Ramos
CD, Yasuda CL, Tedeschi H, et al. Automated online
quantication method for 18F-FDG positron emission
tomography/CT improves detection of the
epileptogenic zone in patients with pharmacoresistant
epilepsy. Front Neurol. 2017;8:453. doi: 10.3389/
fneur.2017.00453
57. Zijlmans M, Zweiphenning W, van Klink N. Changing
concepts in presurgical assessment for epilepsy
surgery Nat Rev Neurol. 2019;15(10):594-606. doi:
10.1038/s41582-019-0224-y
58. Kini LG, Bernabei JM, Mikhail F, Hadar P, Shah
P, Khambhati AN, et al. Virtual resection predicts
surgical outcome for drug-resistant epilepsy. Brain.
2019;142(12):3892-3905. doi: 10.1093/brain/awz303
59. Ho AL, Muftuoglu Y, Pendharkar A V., Sussman ES,
Porter BE, Halpern CH, et al. Robot-guided pediatric
stereoelectroencephalography: Single-institution
experience. J Neurosurg Pediatr. 2018;22(5):1-8. doi:
10.3171/2018.5.PEDS17718
60. De Barros A, Zaldivar-Jolissaint JF, Homann D,
Job-Chapron A-S, Minotti L, Kahane P, et al.
Indications, Techniques, and Outcomes of Robot-
Assisted Insular Stereo-Electro-Encephalography:
A Review. Front Neurol. 2020;11:1033. doi: 10.3389/
fneur.2020.01033
61. Fisher R, Salanova V, Witt T, Worth R, Henry T,
Gross R, et al. Electrical stimulation of the anterior
nucleus of thalamus for treatment of refractory
epilepsy. Epilepsia. 2010; 51(5): 899-908. doi:
10.1111/j.1528-1167.2010.02536.x
62. Lim SN, Lee ST, Tsai YT, Chen IA, Tu PH, Chen JL,
et al. Electrical stimulation of the anterior nucleus
of the thalamus for intractable epilepsy: A long-term
follow-up study. Epilepsia. 2007;48(2):342–7.
63. Chang B, Xu J. Deep brain stimulation for refractory
temporal lobe epilepsy: a systematic review and
meta-analysis with an emphasis on alleviation
of seizure frequency outcome. Childs Nerv Syst.
2018;34(2):321-327. doi: 10.1007/s00381-017-
3596-6
64. Kim SH, Lim SC, Kim J, Son BC, Lee KJ, Shon
YM. Long-term follow-up of anterior thalamic deep
brain stimulation in epilepsy: A 11-year, single center
experience. Seizure. 2017;52:154-161. doi: 10.1016/j.
seizure.2017.10.009
65. Herrera ML, Suller-Marti A, Parrent A, MacDougall
K, Burneo JG. Stimulation of the Anterior Nucleus
of the Thalamus for Epilepsy: A Canadian Experience.
Can J Neurol Sci. 2021;48(4):469-478. doi: 10.1017/
cjn.2020.230
66. González HFJ, Yengo-Kahn A, Englot DJ. Vagus
Nerve Stimulation for the Treatment of Epilepsy.
Neurosurg Clin N Am. 2019;30(2):219-230. doi:
10.1016/j.nec.2018.12.005
67. Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve
stimulation (VNS) therapy update. Epilepsy Behav.
2018;88S:2-10. doi: 10.1016/j.yebeh.2018.06.032
68. Mertens A, Raedt R, Gadeyne S, Carrette E, Boon
P, Vonck K. Recent advances in devices for vagus nerve
stimulation. Expert Rev Med Devices. 2018;15(8):527-
539. doi: 10.1080/17434440.2018.1507732
69. Lo WB, Chevill B, Philip S, Agrawal S, Walsh AR.
Seizure improvement following vagus nerve
stimulator (VNS) battery change with cardiac-based
seizure detection automatic stimulation (AutoStim):
early experience in a regional paediatric unit. Childs
Nerv Syst. 2021;37(4):1237-1241. doi: 10.1007/
s00381-020-04962-3
70. Shenoy C, Alzahrani HA, Upton A, Kamath M V.
Electrostimulation for refractory epilepsy: A review. J
Long Term E Med Implants. 2016;26(3):253-260.
doi: 10.1615/JLongTermEMedImplants.20160175
69
71. Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-
responsive neurostimulation for epilepsy (RNS ®
System). Epilepsy Res. 2019;153:68-70. doi:
10.1016/j.eplepsyres.2019.02.00
72. Chen H, Dugan P, Chong DJ, Liu A, Doyle W,