Acta Herediana vol. 63, N° 1, enero 2020 - junio 2020
90
ganadores del Premio Nóbel 2019, a demostrar
el rol de HIF como principal regulador de la
homeostasis del oxígeno. (46)
Otro importante papel de HIF es su
contribución en aumentar la angiogénesis
en condiciones de hipoxia. (47) Esto ha sido
observado previamente en los nativos de las
grandes alturas como también en condiciones
de presencia tumoral.
El descubrimiento de las HIFs, que ha merecido
el Premio Nobel de este año, destaca también
la importancia que ha tenido y tiene nuestra
escuela de biología y medicina de altura que
ha contribuido de manera importante a la
búsqueda de explicaciones que permitan
entender la intrigante manera por lo cual
los organismos sobreviven y se adaptan en
situaciones de baja disponibilidad de oxígeno.
reFerencias bibLiográFicas
1. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia-
inducible nuclear factors bind to an enhancer element located 3’
to the human erythropoietin gene. Proc Natl Acad Sci
USA. 1991 Jul 1;88(13):5680-4.
2. Semenza GL, Wang GL. A nuclear factor induced by hypoxia
via de novo protein synthesis binds to the human erythropoietin
gene enhancer at a site required for transcriptional activation.
Mol Cell Biol. 1992; 12: 5447-54.
3. Maxwell PH, Pugh CW, Ratclie PJ. Inducible operation of
the erythropoietin 3’ enhancer in multiple cell lines: evidence
for a widespread oxygen-sensing mechanism. Proc Natl Acad
Sci USA. 1993 Mar 15;90(6):2423-27.
4. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible
factor is a basic-helix-loop-helix-PAS heterodimer regulated by
cellular O2 tension. Proc Natl Acad Sci USA. 1995; 92:5510-14.
5. Kaelin WG Jr, Ratclie PJ. Oxygen sensing by metazoans: the
central role of the HIF hydroxylase pathway. Mol.
Cell. 2008;30:393-402.
6. Tashi T, Scott Reading N, Wuren T, Zhang X, Moore LG, Hu
H, et al. Gain of function EGLN1 prolyl hydroxylase (PHD2
D4E:C127S) in combination with EPAS1 (HIF-2α)
polymorphism lowers hemoglobin concentration in Tibetan
highlanders. J Mol Med (Berl). 2017 Jun;95(6):665-70.
7. Smith TG, Robbins PA, Ratclie PJ. The human side of hypoxia-
inducible factor. Br J Haematol. 2008 May;141(3):325-34.
8. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic
A, Asara JM, Lane WS, Kaelin WG Jr. HIF alpha targeted for
VHL-mediated destruction by proline hydroxylation:
implications for O2 sensing. Science. 2001 Apr 20;292(5516):464-
8.
9. Maxwell PH, Wiesener MS, Chang GW, Cliord SC,
Vaux EC, Cockman ME, et al. The tumor suppressor protein
VHL targets hypoxia-inducible factors for oxygen-dependent
proteolysis. Nature. 1999;399:271-5.
10. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell
SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau
ubiquitylation complex by O2-regulated prolyl hydroxylation.
Science. 2001 Apr 20;292(5516):468-72.
11. Kim WY, Kaelin WG. Role of VHL gene mutation in human
cancer. J Clin Oncol. 2004 Dec 15;22(24):4991-5004.
12. Merino CF. Studies on blood formation and destruction in
the polycythemia of high altitude. Studies on blood formation
and destruction in the polycythemia of high altitude. Blood.
1950 Jan;5(1):1-31.
13. Rice L, Ruiz W, Driscoll T, Whitley CE, Tapia R, Hachey
DL, Gonzales GF, Alfrey CP. Neocytolysis on descent from
altitude: a newly recognized mechanism for the control of red
cell mass. Ann Intern Med. 2001 Apr 17;134(8):652-6.
14. Song J, Prchal JT. Evaluation of Erythrocyte Changes After
Normoxic Return from Hypoxia. Methods Mol
Biol. 2018;1742:185-194.
15. Monge MC. Sobre un caso de enfermedad de Váquez. Boletín
de la Academia de Medicina. 1925.
16. Hurtado A. Aspectos siológicos y patológicos de la vida en la
altura. Incorporación a la Academia Nacional de Medicina;
1937.
17. Reynafarje C, Villavicencio de Izquierdo D, Faura J, Zúñiga
H, Anduaga G. [Erythropoiesis inhibiting factor in natives of
high altitude transferred to sea level]. Arch Inst Biol Andina.
1972 Jul-Dec;5(2):91-6. Spanish
18. Reynafarje B. Eect of chronic hypoxia on the kinetics of energy
transformation in heart mitochondria. Cardiology.
1971;56(1):206-8
19. Reynafarje BD, Marticorena E. Bioenergetics of the heart
at high altitude: environmental hypoxia imposes profound
transformations on the myocardial process of ATP synthesis. J
Bioenerg Biomembr. 2002 Dec;34(6):407-12
20. Samanta D, Semenza GL. Maintenance of redox homeostasis
by hypoxia-inducible factors. Redox Biol. 2017 Oct;13:331-5.
21. Prabhakar NR, Semenza GL. Oxygen sensing and
homeostasis. Physiology. 2015; 30:340–8.
22. Villafuerte FC, Corante N. Chronic Mountain Sickness: Clinical
Aspects, Etiology, Management, and Treatment. High Alt Med
Biol. 2016 Jun;17(2):61-9.
23. Penaloza D, Arias-Stella J. The heart and pulmonary circulation
at high altitudes: healthy highlanders and chronic mountain
sickness. Circulation. 2007 Mar 6;115(9):1132-46.
24. Corante N, Anza-Ramírez C, Figueroa-Mujíca R, Macarlupú JL,
Vizcardo-Galindo G, Bilo G, Parati G, Gamboa JL, León-Velarde
F, Villafuerte FC. Excessive Erythrocytosis and Cardiovascular
Risk in Andean Highlanders. High Alt Med Biol. 2018
Sep;19(3):221-31.
25. Alarcón-Yaquetto DE, Caballero L, Gonzales GF. association
between plasma n-acylethanolamides and high hemoglobin
concentration in southern Peruvian highlanders. High Alt Med
Biol. 2017 Dec;18(4):322-9.
26. Gonzales GF, Tapia V, Gasco M, Gonzales-Castañeda C. Serum
testosterone levels and score of chronic mountain sickness in
Peruvian men natives at 4340 m. Andrologia. 2011 Jun;43(3):189-
95.
27. León-Velarde F, Villafuerte FC, Richalet JP. Chronic mountain
sickness and the heart. Prog Cardiovasc Dis. 2010 May-
Jun;52(6):540-9. Review.
28. Gonzales GF, Gasco M, Tapia V, Gonzales-Castañeda C.